Welcome to CS103!



Hello from Cynthia Bailey Lee!

)

“Like a cat lady, but for chickens.’
(a friend’s description of me)




Hello from Alex Aiken!
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Fun fact: has traveled
with family to Reunion Island,
off the coast of Madagascar!
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Are there “laws of physics”
in computer science?



Key Questions in CS103

 What problems can you solve with a
computer?

« Computability Theory

« Why are some problems harder to solve than
others?

« Complexity Theory

« How can we be certain in our answers to these
questions?

e Discrete Mathematics



Course Website

https://cs103.stanford.edu

Almost all course Let’s go to the
content will be website and check

hosted here. out the syllabus!



https://cs103.stanford.edu/

Problem Set O

* Your first assignment, Problem Set 0, goes
out later today. It’s due Friday at 2:30pm PT.

» This assignment requires you to:

 Make sure the QT software you need for the
class is working on your computer.

« Make sure you’ve absorbed the course Honor
Code.

 Make sure you’ll be able to attend all our exams
as scheduled (while it’s not too late to switch out
of this class if not).



We've got a big journey ahead of us.

Let's get started!



Introduction to Set Theory



A set is an unordered collection of distinct
objects, which may be anything, including
other sets.



A set is an unordered collection of distinct
objects, which may be anything, including other
sets.



Set notation: Curly braces with
commas separating out the
elements

A set is an unordered collection of distinct
objects, which may be anything, including other
sets.



LY - WO

These are two different
descriptions of exactly the
same set.

Two sets are equal when they have the same
contents, ignoring order.



OVg -

These are also two different
descriptions of exactly the
same set.

(But please use the description
without duplication :-) )

Sets cannot contain duplicate elements.
Any repeated elements are ignored.



The objects that make up a set are called the
elements of that set.



This symbol means “is
an element of.”

The objects that make up a set are called the
elements of that set.



This symbol means “is
not an element of.”

The objects that make up a set are called the
elements of that set.



Sets can contain any number of elements.



9,

We denote the
empty set using
this symbol.

The empty set
is the set with
no elements.

Sets can contain any number of elements.
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Question: Are these objects equal?



--------------------------------------------------------------------------------

This is a
v number.

This is a set.
It contains a
number,

-------------------------------------------------------------------------------

Question: Are these objects equal?



--------------------------------------------------------------------------------

This is a
v number.

This is a set.
It contains a
number,

-------------------------------------------------------------------------------

Question: Are these objects equal?
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Question: Are these objects equal?



This is the
empty set.

This is a set
with the empty —
set 1n it.

-------------------------------------------------------------------------------

Question: Are these objects equal?



This is the
empty set.

This is a set
with the empty —
set 1n it.

-------------------------------------------------------------------------------

Question: Are these objects equal?



--------------------------------------------------------------------------------

This is x
l itself.
X This is a box
that has x

inside it.

-------------------------------------------------------------------------------

No object x is equal to the set containing x.



Infinite Sets

Some sets contain infinitely many elements!

Theset N=4{0,1, 2, 3, ...} is the set of all the
natural numbers.

e Some mathematicians don't include zero; in this
class, assume that 0 is a natural number.

ThesetZ=4{...,-2,-1,0,1, 2, ... }is the set of
all the integers.

e 7/ is from German “Zahlen.”
The set R is the set of all real numbers.

ceceR neR, 4 eR, etc.



Describing Complex Sets

 Here are some English descriptions of
infinite sets:

“The set of all even natural numbers.”
“The set of all real numbers less than 137.”

“The set of all negative integers.”

* To describe complex sets like these
mathematically, we'll use set-builder
notation.



Even Natural Numbers

{n|né€Nandniseven }



Even Natural Numbers



Even Natural Numbers

I

/‘

The set of all n



Even Natural Numbers

I

The set of all n\

where



Even Natural Numbers

nlneN
The set of all n\
where

N is a nhatural number



Even Natural Numbers

nEN nis even

A
The set of all n
where
N is a natural number

and n is even



Even Natural Numbers

nlneN nis even

~ ‘
The set of all n\
where

N is a nhatural number

and n is even

10,2,4,0, 8,10, 12, 14, 10, ... }



Set Builder Notation

* A set may be specified in set-builder
notation:

{ X | some property x satisfies }
{ x € § | some property x satisfies }
 For example:

{n|né€Nandniseven }

{ C | Cis a set of US currency }
{reR|r<3}

{neN|n<3} (theset {0, 1, 2})



Subsets and Power Sets



Subsets

e A set S is called a subset of a set T
(denoted § C T) if all elements of S are

also elements of T.

 Examples:
*«{1,2,3}C{1,2,3,4}
e {b,c}C{a b,cd}
« {H, He,1i} C€C{H, He, Li}
« N CZ (every natural number is an integer)
« Z C R (everyintegeris a real number)



Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

Set S

.....
B 2002

General intuition:
X € S means you

can point at x {2} E S

inside of S.




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

Set S




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

General intuition:
A C B if you can
form A by circling
element(s) of B.




Subsets and Elements




Subsets and Elements

(Since 2 isn't a
set.)




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements




Subsets and Elements

Set S

12}




Subsets and Elements

 We say that § € T if, among the elements of T,
one of them is exactly the object S.

« Wesay that § € T if S is a set and every
element of S is also an element of T. (S has to
be a set for the statement S C T to be true.)

» Although these concepts are similar, they are not
the same! Not all elements of a set are subsets of
that set and vice-versa.

« We have a resource on the course website, the
Guide to Elements and Subsets, that explores this
in more depth.



This is the power set of S, the set of
all subsets of S. We write the power
set of S as p(S5).

Formally, o(S) ={T|TCS }.
(Do you see why?)




What is 0 (9)?

Answer: {0}

Remember that @ # {Q}!



Cardinality



Cardinal



Cardinality

* The cardinality of a set is the number of elements it
contains.

« If S is a set, we denote its cardinality as |S]|.

 Examples:
* |{whimsy, mirth}| = 2
* |{{a, b}, {c.d, e f g}, {hi}| =3
* 141,2,3,3,3,3,3}| =3
* |[{neN|n<4}|=1]{0,1,23}| =4
+ |@]=0
* | {9} ] =1




The Cardinality of N

 What is |N]|?
 There are infinitely many natural numbers.

* |[N| can't be a natural number, since it's
infinitely large.



The Cardinality of N

 What is |N]|?
 There are infinitely many natural numbers.

* |[N| can't be a natural number, since it's
infinitely large.

e We need to introduce a new term.
* Let's define No = |NJ|.

* N is pronounced “aleph-zero,
nought,” or “aleph-null.”

)

aleph-



Consider the set

S={n|neNandniseven }.

What is |S]?



ow Big Are These Sets?

O
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ow Big Are These Sets?




Comparing Cardinalities

* By definition, two sets have the same size
if there is a way to pair their elements off
without leaving any elements uncovered.

e The intuition:




Comparing Cardinalities

* By definition, two sets have the same size
if there is a way to pair their elements off
without leaving any elements uncovered.

e The intuition:

Everything has been
paired up, and this one
is all alone.




Infinite Cardinalities

N 3 5 7

T

S

S={n‘n€Nandniqe\mnl
Two sets have the same size if
there is a way to pair their
elements off without leaving
any elements uncovered




Infinite Cardinalities

N 3 5 7

T

S

S={n‘n€Nandniqe\mnl
Two sets have the same size if
there is a way to pair their
elements off without leaving
any elements uncovered




Infinite Cardinalities

S={n|né€Nandniseven }



Infinite Cardinalities

N 0 1 2 3 4 5 6 7 8
S 0 2 4 6 8 10 12 14 16 ..

ne 2n

S={n|né€Nandniseven }

S| = IN] = No



Important Question:

Do all infinite sets have
the same cardinality?



(S)

S| < |9 (S)]



0 (S)

S| < |9 (S)]



S=4{a,b,c, d}

P(S) = {
A,
{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b,d}, {c, d}
{a, b, c}, {a, b,d}, {a, c,d}, {b, c, d},
{a, b, c, d}

}

S| < |0 (S)]



If |S| is infinite, what is the
relation between |S| and |p(S)]|?

Does |S| = [0 (S5)]?



If |S| = |9 (S)|, we can pair up the elements
of S and the elements of ¢ (S) without
leaving anything out.



If |S| = |9 (S)|, we can pair up the elements
of S and the elements of @ (S) without
leaving anything out.




If |S| = |9 (S)|, we can pair up the elements
of S and the subsets of S without
leaving anything out.



If |S| = |9 (S)|, we can pair up the elements
of S and the subsets of S without
leaving anything out.



If |S| = |9 (S)|, we can pair up the elements
of S and the subsets of S without
leaving anything out.

What would that look like?



X0 €

X1 €

X2 P

X 3 >

X0,
X3,
X0,
X1,
X2,

X0,

X2,
X5,
X1,

X4,



X0 €

X1 €

X2 P

X 3 >

X0

X1

X2

X3

X4

X5

Xo,
X3,
Xo,
X1,
X2,

X0,

X2,
X5,
X1,

X4,




X0 X1 X2 | X3 Xa X5
Xo > Xo, X2, X4,
X1 > X3, X5,
X2 > Xo, X2, X5,
X3 > X1, X4,
X4 €1 X2,
X5+ Xo, X4, X5,




X €

X1 €

X2 P

X 3 P

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,
Xo, X4, X5,
{ Xo, X2, X5,

Which element is
paired with this
set?




X €

X1 €

X2 P>

X 3 P

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,
Xo, X4, X5,
{ Xo, X2, X5,

Which element is
paired with this
set?




X0 >

X1 €

X2 P

X 3 ¢

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,
Xo, X4, X5,

“Flip” this set.
Swap what's
included and

what’s excluded.




X0 >

X1 €

X2 P

X 3 ¢

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,

Which element is
paired with this
set?



X0 X1 X2 X3 | X4 X5

1 | Which element is
paired with this
set?




X1

X3

X4

X5

Which element is
paired with this
set?




X0 X1 X2 X3 | X4 X5

Xo < Xo, X2, X4, cee [

Which element is
paired with this
set?




X €

X0

X1

X2

X3

X4

X5

X0,

X2,

X4,

X1 €

X5,

Which element is
paired with this

set?




X €

X1 €

X2 P

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,

X3, X5,
Xo, X2, X5,

Which element is
paired with this
set?




X €

X1 €

X2 P

X 3 P

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,

Which element is
paired with this
set?



X €

X1 €

X2 P

X 3 P

X0 X1 X2 | X3 Xa X5
Xo, X2, X4,
X3, X5,
Xo, X2, X5,
X1, X4,
X2,

Which element is
paired with this
set?




The Diagonalization Proot

 No matter how we pair up elements of S and
subsets of S, the complemented diagonal won't
appear in the table.

* In row n, the nth element must be wrong.

« No matter how we pair up elements of S and
subsets of S, there is always at least one subset
left over.

* This result is Cantor's theorem: Every set is
strictly smaller than its power set:

If S is a set, then |S| < |p(S)].



Two Infinities...

By Cantor's Theorem:

IN| < [@N)]



...And Beyond!

By Cantor's Theorem:

IN| < |p(N))]
[AN)| < |(A@N))]
[ AAN))| < [ AAN)))]
[ A A @AN)))| < | @A A AN))))|

 Not all infinite sets have the same size!
 There is no biggest infinity!

 There are infinitely many infinities!



What does this have to do
with computation?



“The set of all computer programs”

“The set of all problems to solve”



Things on Strings

« A string is a sequence of characters.
 Two fun facts about strings:

 There are at most as many programs as there are
strings. (All programs are strings)

 There are at least as many problems as there are sets of
strings.

« There’s an appendix to this slide deck that provides
an overview of why these claims are true.

 These facts, plus Cantor’s theorem, have terrifying
implications.



Every computer program is a string.

So, the number of programs is at most the
number of strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| = |Strings| < |p(Strings)| = |Problems|




Every computer program is a string.

So, the number of programs is at most the
number of strings.

From Cantor's Theorem, we know that there are
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| < |Problems]




There are more problems to
solve than there are programs
to solve them.

|Programs| < |Problems]




It Gets Worse

« Using more advanced set theory, we can
show that there are infinitely more
problems than solutions.

 In fact, if you pick a totally random problem,
the probability that you can solve it is zero.

« More troubling fact: We've just shown
that some problems are impossible to
solve with computers, but we don't know
which problems those are!



We need to develop a more nuanced
understanding of computation.



Where We're Going

- What makes a problem impossible to solve
with computers?

 Is there a deep reason why certain problems can't be
solved with computers, or is it completely arbitrary?

« How do you know when you're looking at an
impossible problem?

» Are these real-world problems, or are they highly
contrived?

« How do we know that we're right?

« How can we back up our pictures with rigorous
proofs?

« How do we build a mathematical framework for
studying computation?



Next Time

« Mathematical Proof

« What is a mathematical proof?
« How can we prove things with certainty?



Extra Slides

(We will revisit the diagonalization proof in more
detail later in Week 4.What follows is a second
example of finding two sets have equal cardinality
even though their cardinality might appear different,
and some additional explanation of the relationship
between strings and problems.)



Infinite Cardinalities



Infinite Cardinalities



Infinite Cardinalities

N

0 1
0 1

Z



Infinite Cardinalities

Two sets have the same size if
there is a way to pair their
elements off without leaving

any elements uncovered




Infinite Cardinalities



Infinite Cardinalities

o 1 2 3 4 5 o6 7 38



Infinite Cardinalities



Infinite Cardinalities




Infinite Cardinalities

N O 1 2 3 4 5 6 7 8
7 0 1 y 3 4
3 2 A

Pair nonnegative integers with even natural numbers.



Infinite Cardinalities

7

|

-4

|

Pair nonnegative integers with even natural numbers.



Infinite Cardinalities

Pair nonnegative integers with even natural numbers.



Infinite Cardinalities

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.



Infinite Cardinalities

N OIZSLLTTTT
7 0 -1 1 2 2 3 3 -4 4
IN| = |Z] = N

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.



Appendix: String Things



Strings and Programs

 The source code of a computer program is just a
(long, structured, well-commented) string of text.

« All programs are strings, but not all strings are
necessarily programs.

“’_—-..~
» ~

All possible All possible
. programs strings

4

v

~ v
~ -
-------

|Programs| = |Strings)|



Strings and Problems

e There is a connection between the number
of sets of strings and the number of
problems to solve.

* Let S be any set of strings. This set S gives
rise to a problem to solve:

Given a string w, determine whether w € S.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that S is the set
S={"a","b", "c", ..., "2" }
 From this set S, we get this problem:

Given a string w, determine whether
w is a single lower-case English letter.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that S is the set

s=4{"0"% "1", "2", ..., "9", "10", "11", ... }
 From this set S, we get this problem:

Given a string w, determine whether
w represents a natural number.



Strings and Problems

Given a string w, determine whether w € S.
 Suppose that S is the set
S={p]|pisalegal C++ program }
 From this set S, we get this problem:

Given a string w, determine whether
w is a legal C++ program.



Strings and Problems

* Every set of strings gives rise to a unique
problem to solve.

» Other problems exist as well.

¢‘—__-."~
. ~

’

{ Problems %  AJ] possible

E formed from roblems
s sets of strings / P

A 4

8

N v
~ -
-------

|Sets of Strings| = |Problems]|
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